NAPL In The UK Context, Does it Matter?

Site Investigation, Risk Assessment & Remediation of NAPL at a Site in Grangemouth

Chris EcclesDirectorNick FrostPrincipal GeologistMike HarperPrincipal Environmental
Consultant

TerraConsult

serving science, profession & society

Introduction

- Site investigation found an area of site with complex NAPL mix:
 - Petroleum hydrocarbons
 - > Chlorobenzene
 - > Nitrobenzene
 - > Other VOCs, SVOCs with DNAPL
- Risk assessment showed low risks but DNAPL required remediation.
- Remediation design:
 - Short time period in very low permeability stratum
 - > 365 remedial wells
 - Remediation and regulatory sign off in 17.5 weeks

Development Outline

- 215,000 tpa Energy from Waste Plant (EfW)
- 2 ha site adjacent to off-site chemical works (organic dyes)
- Site itself was a former chemical works
- 'Flat' land at 5 mOD, 2.5 km from Firth of Forth
- 'Standard' planning conditions associated with ground to be discharged including approval of:
 - Phase 1 SI
 - Phase 2 SI
 - Remediation Strategy
 - ≻ Etc
- Initial "geotechnical" SI carried out by others.

Initial Geotechnical SI

Factual report only - completed late 2016 by others

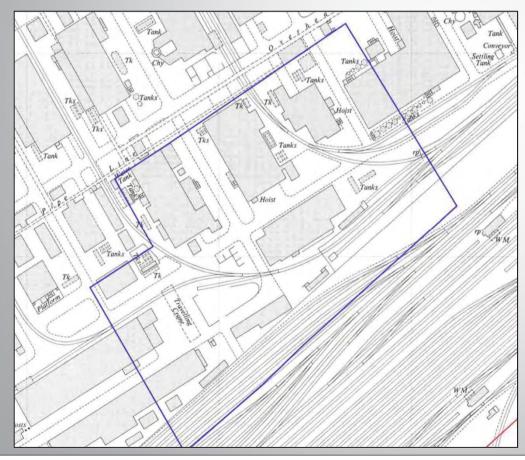
- 5 No. Cable percussive with rotary follow on to 43.5 m
- 2 No. Rotary open holes continued by rotary coring to 50 m
- 15 No. dynamic sample holes to 5 m with SPTs
- 7 No. shallow monitoring wells; 2 deep/39 m wells
- 15 No. Trial pits/trenches
- Chemical 26 samples tested, only one had 'elevated TPH'
- Geotechnical laboratory testing
- Two attempts at one borehole terminated due to "high visual and olfactory contamination (hydrocarbon)." Contamination was not tested.

Site Investigation – Specified by Civils Consultant

TENDER REQUIREMENTS

- Phase 1 Desk Study
- 5 No. Cable percussive with rotary follow on to bedrock !
- 5 No. dynamic sample holes to 5 m with SPTs
- 8 No. shallow monitoring wells
- 5 No. CPT to refusal
- 15 No. Trial pits/trenches
- Geophysics Seismic survey across site
- Chemical (40 samples) & geotechnical laboratory testing
- Interpretative report
- Draft report to be completed in 6 weeks from award

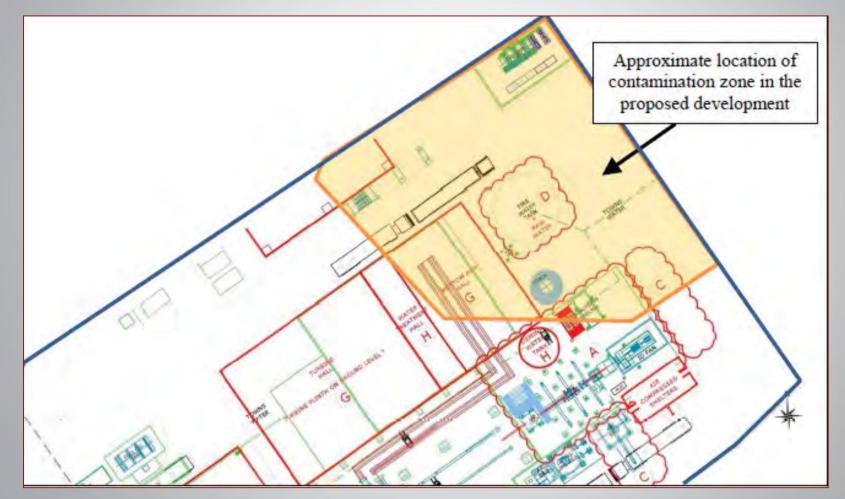
Site Investigation – TerraConsult Alternative Tender


LOWER COST BY £15k – PROGRAMME CERTAINTY

- Phase 1 Desk Study
- 5 No. Rotary wireline boreholes to 50 m (rock >60 m) !
- 5 No. dynamic sample holes to 7 m with SPTs
- 11 No. monitoring wells 3 deep & 8 shallow
- 5 No. CPT to refusal
- 15 No. Trial pits/trenches
- Geophysics Magnetic & electromagnetic (EM31)
- Chemical (52 samples) & geotechnical laboratory testing
- Interpretative report
- Draft report to be completed in 6 weeks from award

Phase 1 Desk Study

- Historic maps & environmental searches
 - > 1915 Railway sidings in south of site
 - > 1938 2015 Dye works with railway sidings
 - > 2016 Demolition


Phase 1 Geology Based on Existing SI

Stratum	Description	Thickness (m)	Depth to Base (m)
Made Ground	Dark brown to black clayed SAND & GRAVEL	0.50 – 1.70	0.50 – 1.70
Made Ground	Very soft to stiff, brown/grey, slightly sandy, gravelly CLAY.	0.50 – 2.10	1.00 – 3.80
Tidal Flat Deposits	Very soft to firm, brown/grey, slightly sandy CLAY/silty CLAY	25.40 - 35.00	26.50 - 37.00
Glacial Till	Firm to very stiff, brown/grey, gravelly, silty CLAY with rare cobbles.	30 m ?	~ 60 m ?
Bedrock	Carboniferous SANDSTONE.		
Groundwater	~0.50 m depth		

TerraConsult

Phase 1 Desk Study

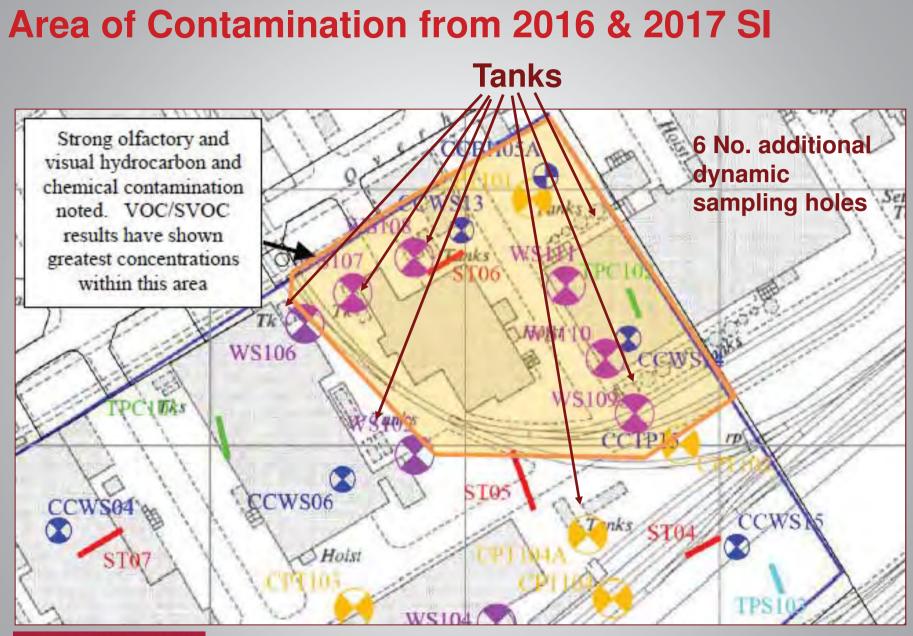
Assess 2016 SI - Carry out 6 No. extra dynamic sample holes in area of visual and odorous contamination

TerraConsult

Initial Risk Assessment – July 2017

- 80% of site very low concentrations of contaminants.
- 20% of site in northern corner elevated soil concentrations:
 - > Petroleum hydrocarbons,
 - > Chlorobenzene & dichlorobenzenes
 - > Nitrobenzene
 - > Other VOCs, SVOCs with DNAPL
- Elevated concentrations in upper 6 to 7 m only.
- At 6 to 7 m bed of firm clay appeared to be limiting depth of contamination.
- Shallow groundwater at 0.5 to 1.0 m depth, very shallow gradient of 0.0077 to north.
- Deep groundwater (>35 m depth) is artesian

TerraConsult


Initial Risk Assessment – July 2017 Shallow groundwater – two rounds of testing:

- Maximum concentrations in northern corner:
 - ≻ Chlorobenzene: 32,000 µg/l
 > Dichlorobenzenes: 4,100 µg/l
 > Nitrobenzene: 420,000 µg/l
 > Analine: 60,000 µg/l
 - > Aromatic C_{10} - C_{12} : 850,000 µg/l

> Other VOCs, SVOCs with DNAPL

- NAPL present
- Low risk to the water environment:
 - Nearest surface water feature River Carron >1 km.
 Sandstone aquifer 60 m depth not at risk: > 50 m low permeability clay and artesian groundwater

TerraConsult

TerraConsult

Site Investigation – Further SI July & Sept 2018

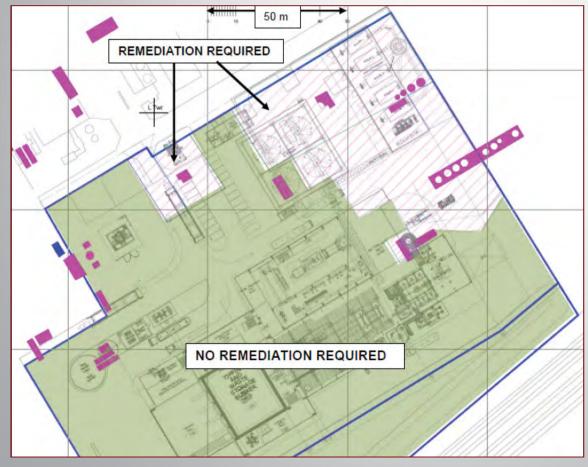
- 2017 Investigation report recommended:
 - Further site investigation to delineate tanks
 DQRA
- July 2018: 12 (18) No. holes to 7 to 8 m with monitoring wells:
 - > 6 pairs of holes in north with 4 m and 7 m wells
 - 6 holes around other former tanks across rest of site
- Sept 2018: 17 holes with monitoring wells to 8 m to improve delineation
- Groundwater sampling & testing in July & September 2018
- Improve CSM & Update Remediation Strategy

TerraConsult

Site Investigation – Further SI July 2018

- DQRA
 - > Hydraulic gradient: 0.007
 - Hydraulic conductivity:3 x 10⁻⁵ m/day (3.5 x 10⁻¹⁰ m/s)
 - Compliance points 50 & 250 m (River Carron >1 km)
- Travel time: Chlorobenzene to 50 m is 0.5 million years
- Travel time for other principal contaminants is longer
- Very low risk
- SEPA policy: all free product to be removed irrespective of risk
- Remediation required

Site Investigation – Remediation Proposal July 2018


- Options appraisal take into account:
 - Low permeability wells take >4 days to recharge
 - Time for remediation 3 months
 - DNAPL removal difficult
 - Compliance points: 50 m (River Carron >1 km)
- Remediation required proposed betterment:
 - Pump and removal: 186 wells 3.5 m grid, extract for 1 month
 - Chemical Oxidisation & In Situ Bio-augmentation
- Monitoring & verification

August 2018 SEPA agree to betterment with aim to achieve Remedial Target Values (RTV) but want more SI

Remediation Proposal October 2018

- SEPA wanted remediation to concentrate on contaminant removal rather than use of chemical oxidants
- Pump and removal: 300 wells 3.5 m grid, extraction over 5 weeks.

- Remediation area
 1.6 times larger
 and double the
 estimated liquid
 removal
- No chemical oxidisation & In Situ Bioaugmentation proposed

Remediation Proposal 3rd December 2018

- After further SEPA comments:
 - Increased remediation area further
 - > Agree to betterment on an agreed scope of works
 - Increase number of wells & increase estimated liquid removal volume
 - Requested chemical oxidisation & In Situ Bioaugmentation to be reinstated
- Remediation:
 - Install further 355 remediation wells to 7.6 m on 4 m grid & 12 monitoring wells
 - Dual Phase Vapour Extraction extraction over 9 weeks
 - Two injection rounds chemical oxidisation & In Situ Bio-augmentation.
- Monitoring & verification.

Remediation Proposal 3rd December 2018 50-m ELEVATED CONTAMIANT. CONCENTRATIONS. TYPICALLY. CC' AT-5.0-TO-7.5-m-DEPTH¶ CCWS12 CCWS15 CCBH034 CCBH03 NO-ELEVA TED-CONTAMIANT-CONCENTRA TIONS CCWS CC BH02 CCBR02B CCW803 COBH01-RC CCBH01 TP02 ŴM

TerraConsult

Monitoring Plan

Four rounds of Verification Monitoring will be carried out:

- Round 1: During well installation baseline
- Round 2: After minimum of 3 weeks of DPVE extraction
- Round 3: Towards End of DPVE (minimum of 6 weeks extraction)
- Round 4: Two weeks post second chemox injection

The verification reporting will be in three stages:

- Interim Report 1: After Monitoring Rounds 1 and 2.
- Interim Report 2: After Monitoring Round 3.
- Main Groundwater Verification Report on completion.
- SEPA agree to phased sign off.

Remediation - Well Installation By TerraConsult

- 355 remediation wells & 12 monitoring wells to 8 m.
- 3 week programme up to dynamic sampling 6 rigs

Remediation - Well Installation

Remediation – DPVE by Geo2

Ten rounds of extraction from each well

 4 days to recharge each well

TerraConsult

Chemox by Geo2

- Each remediation well injected twice
- Each well 2 x 25 L of 5 % Klozur (MSDS Ref no. 7775-27-1-12) – 20 m³ total injection.
- Solution contained Sodium Persulfate, Sodium Peroxydisulfate and Disodium Peroxydisulfate.

TerraConsult

Remediation Key Dates

- SEPA approval of remediation strategy 6th December 2018
- Instruction 15th December 2018 Contract Award Jan 19!
- Well installation 9th to 26th January 2019.
- Dual Phase Vapour Extraction (DPVE) 10 rounds: 30th January to 22nd March 2019
- Chemox Injection:
 - Round 1: 27th March to 1st April 2019
 - **Round 2 : 1st to 3rd April 2019**

Remediation Key Dates

- Instruction 15th December 2018.
- Well installation 9th to 26th January 2019. **Baseline/Round 1: 31st January 2019**
- Dual Phase Vapour Extraction (DPVE) 10 rounds 30th January to 22nd March 2019 VR1 Wells & Round 1/2 26th February 2019 Round 2: 18th February 2019 VR2 Round 3 **Round 3: 11th March 2019**
- Chemox Injection

20th March 2019

Round 1: 27th March to 1st April 2019

Round 2 : 1st April to 3rd April 2019

Round 4: 23rd April 2019 – Only 3 weeks after injection

VR3 Round 4 30th April 2019

TerraConsult

Remediation Key Dates

- Instruction 15th December 2018.
- Well installation 9th to 26th January 2019.
 Baseline/Round 1: 31st Janua 2019

Verification Sign-off by SEPA 14th May 2019 PVE) – 10 rounds

VR1 Wells & Round 1/2 26th February 2019

> VR2 Round 3 20th March 2019

PROUND 1: 27th Warch to 1th April 2019

Round 2 : 1st April to 3rd April 2019

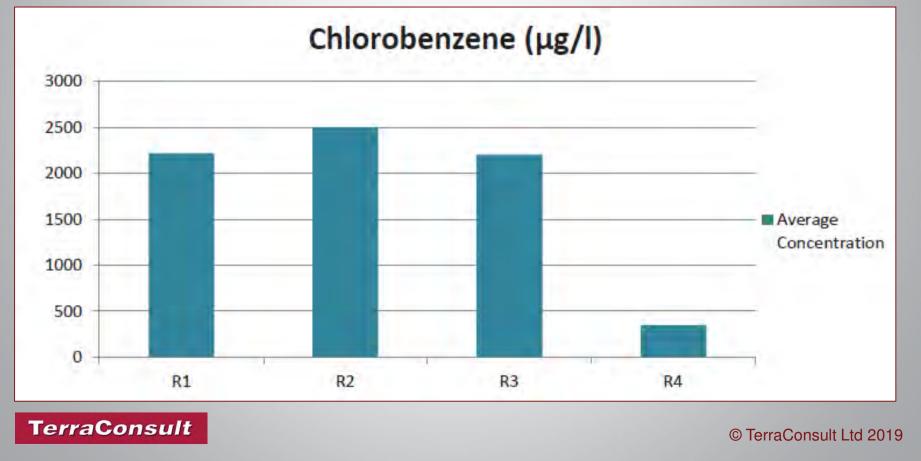
Round 4: 23rd April 2019 – Only 3 weeks after injection

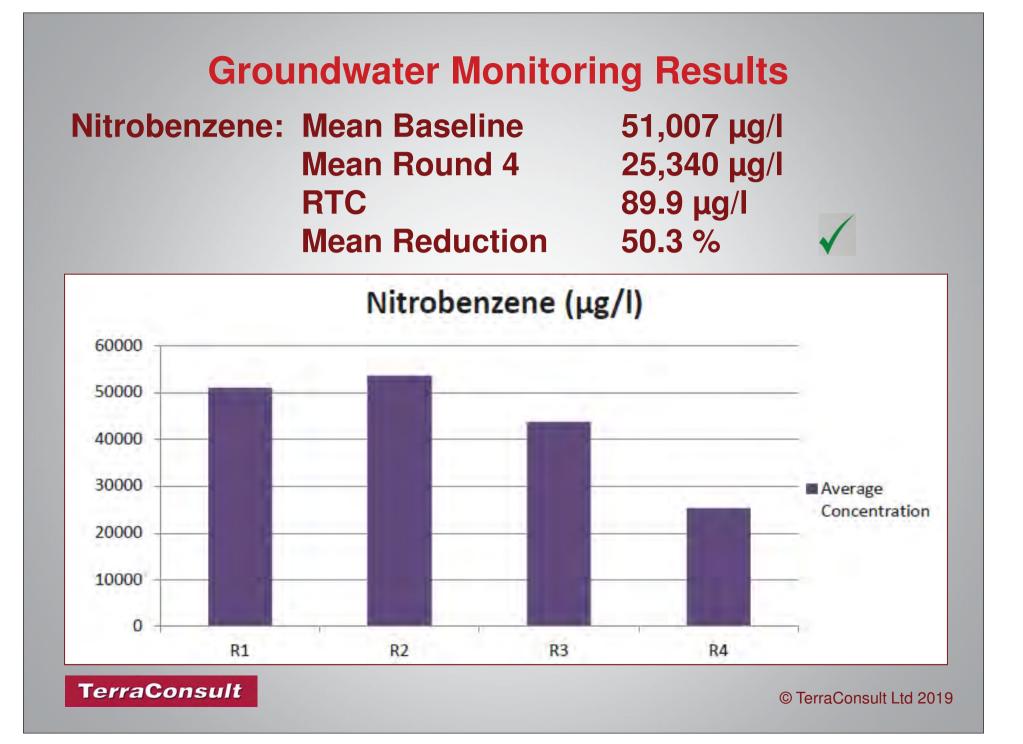
VR3 Round 4 30th April 2019

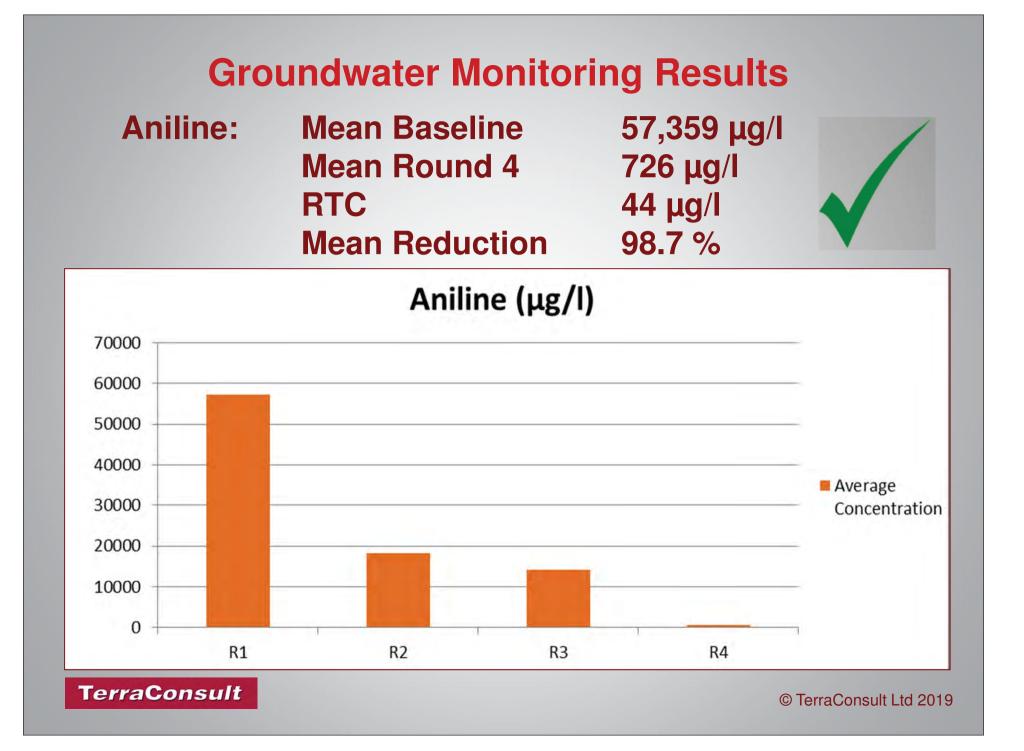
TerraConsult

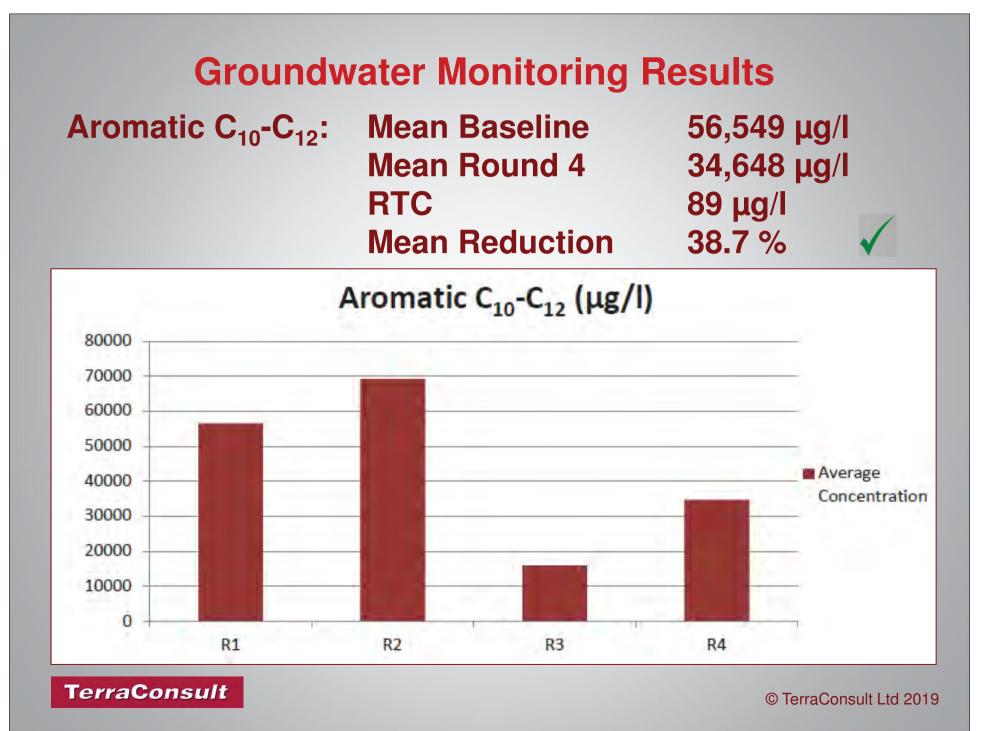
Verification by TerraConsult

Two main approaches to show betterment:


- Concentration in monitoring wells
- Mass of contaminant removed
 - Removal of liquid & vapour by DPVE
 - Chemox injection




Groundwater Monitoring Results


Chlorobenzene:Mean Baseline2,2Mean Round 4349RTC890Mean Reduction98.

2,212 μg/ 349 μg/l 890 μg/l 98.7 %

Groundwater Monitoring Results Summary:

Mean reduction in groundwater concentrations across the remediation area over 12 weeks:

Benzene	73.1 %	
Chlorobenzene	84.2 %	
Nitrobenzene	50.3 %	
Aniline	98.7 %	
Aromatic C ₁₀ -C ₁₂	38.7 %	

Mass Removal

Summary: Dual Phase Removal - Liquid:

Volume Pumped85 m³Mass of NAPL Removed232 kg

Determinand	Average Concentration (µg/l)*	Mass Removed (kg)	
Chlorobenzene	5,565	0.45	
Benzene	1.44	0.00	
1,2-Dichlorobenzene	2,892	0.24	
1,3-Dichlorobenzene	314	0.02	
1,4-Dichlorobenzene	1,831	0.15	
Nitrobenzene	789,263	67.1	
Aniline	100,072	10.1	
Aliphatic C10-C12	2,537	0.18	
Aliphatic C12-C16	1,216	0.11	
Aliphatic C16-C21	1,592	0.15	
Aliphatic C21-C35	553	0.05	
Aromatic C10-C12	2,343,496	153.2	
Aromatic C12-C16	2,326	0.17	
Aromatic C16-C21	2,035	0.15	
Aromatic C21-C35	934	0.07	

Mass Removal

Summary: Dual Phase Removal – Liquid Removed:

The average concentration in the IBC waste water being higher than the baseline groundwater concentrations – mobilisation of NAPL

Determinand	IBC Collection 1 Average Concentration (µg/l)	Final/6 th IBC Collection Average Concentration (µg/l)	
Benzene	18	1	
Chlorobenzene	2,212	2,263	
Nitrobenzene	51,007	877,619	
Aniline	57,359	257,388	
Aromatic C ₁₀ -C ₁₂	56,549	513,308	

Terra	Consult

Mass Removal

Summary: Dual Phase Removal - Vapour:

Vapour Volume Pumped84,000 m³Mass of NAPL Removed??? kg

Mass of Nitrobenzene Removed 40.14 kg

Mainly Nitrobenzene as this is most prevalent VOC

Limited mass of Chlorobenzene and vapours of other VOCs because their concentrations were >10 times lower and smaller molecular weights

Mass Removal Summary: All Stages:					
Volume Liquid Removed Volume Air Pumped Mass of Chemox Injected			85 m ³ 84,000 m ³ 20 m ³		
Determinand	Dual Phase Removal - Liquid (kg)		Chemox (kg)	Total (kg)	
Total Principal Contaminants Removed	232	40.1	4.3	276.4	
Aromatic C ₁₀ -C ₁₂ Nitrobenzene	153 67	? 40.1	1.3 2.3	154.3 109.4	
Aniline Other NAPLs	10 2	- ??	0.7 0.01	10.67 2.01	
TerraConsult	L			TerraConsult Ltd 2019	

Groundwater Monitoring Results

"Final" remedial concentrations would be lower than this due to:

- Low permeability of the Tidal Flat Deposits resulting in limited aquifer penetration of Chemox.
- The second phase of the Chemox injection is slowly activated and will continue to act on contaminants for up to 3 to 6 months prior to the final groundwater verification sampling.

Conclusion

Difficult site to remediate due to:

- Very low permeability of the Tidal Flat Deposits
- Complex mix of NAPL
- Difficult/short time constraints

Worked with SEPA to agree strategy for betterment.

Demonstrated significant betterment over 17.5 weeks from commencement to regulatory approval of remediation.

TerraConsult

Bold Business Centre, Bold Lane, Sutton, St Helens, WA9 4TX Tel: +44 (0) 1925-291111

Unit 15 (2) A3, Springfield Commercial Centre Farsley, Leeds, LS28 5LY Tel: +44 (0) 113 834 6474

> Duggard House, Peartree Road Colchester, Essex, CO3 0UL Tel: +44 (0) 1206 585600

E-mail: <u>mailbox@terraconsult.co.uk</u> www.terraconsult.co.uk